Chapter 3

Differential equations

3.1 Problems DE-1

3.1.1 Topics of this homework:

Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus (real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series

Problem \# 1: In each case derive (e.g., using Taylor's formula) the power series of $w(s)$ about $s=0$ and give the RoC of your series. If the power series doesn't exist, state why! Hint: In some cases, you can derive the series by relating the function to another function for which you already know the power series at $s=0$.

$$
-1.1: 1 /(1-s)
$$

Sol: $1 /(1-s)=\sum_{n=0}^{\infty} s^{n}$, which converges for $|s|<1$ (e.g., the RoC is $\left.|s|<1\right)$.

$$
-1.2: 1 /\left(1-s^{2}\right)
$$

Sol: $1 /\left(1-s^{2}\right)=\sum_{n=0}^{\infty} s^{2 n}$, which converges for $\left|s^{2}\right|<1$. (e.g., the RoC is $|s|<1$). One can also factor the polynomial, thus write it as: $\frac{1}{(1-s)(1+s)}$. There are two poles, at $s= \pm 1$, and each has an RoC of 1 .

$$
-1.3: 1 /\left(1+s^{2}\right) .
$$

Sol: The resulting series is $1 /\left(1+s^{2}\right)=0.5 \sum_{n=0}^{\infty} s^{n}\left((-i)^{n}+(i)^{n}\right)$. The RoC is $|s|<1$. We can see this by considering the poles of the function at $s= \pm i$; both poles are 1 from $s=0$, the point of expansion. An alternative is to write the function as $1 /\left(1-(i s)^{2}\right)=\sum(i s)^{n}$. .

$$
-1.4: 1 / s
$$

Sol: If you try to do a Taylor expansion at $s=0$, the first term, $w(0) \rightarrow \infty$. Thus, the Taylor series expansion in s does not exist.

$$
-1.5: 1 /\left(1-|s|^{2}\right)
$$

Sol: The imaginary part is zero. Thus the derivative of the imaginary part is zero. Thus the CR conditions cannot be obeyed.

Problem \# 2: Consider the function $w(s)=1 / s$
-2.1: Expand this function as a power series about $s=1$. Hint: Let $1 / s=1 /(1-1+s)=$ $1 /(1-(1-s))$.

Sol: The power series is

$$
w(s)=\sum_{n=0}^{\infty}(-1)^{n}(s-1)^{n}
$$

which converges for $|s-1|<1$.
To convince you this is correct, use the Matlab/Octave command syms s; taylor (1/s,s,'ExpansionPoint', 1), which is equivalent to the shorthand syms s; $\operatorname{taylor}(1 / s, s, 1)$. What is missing is the logic behind this expansion, given as follows: First move the pole to $z=-1$ via the Möbius "translation" $s=z+1$, and expand using the Taylor series

$$
\frac{1}{s}=\frac{1}{1+z}=\sum_{n=0}^{\infty}(-z)^{n}
$$

Next back-substitute $z=s-1$ giving

$$
\frac{1}{s}=\sum(-1)^{n}(s-1)^{n}
$$

It follows that the RoC is $|z|=|s-1|<1$, as provided by Matlab/Octave. -
-2.2 : What is the RoC?
Sol: As stated in the solution of $2.1,|s-1|<1$. \quad

- 2.3: Expand $w(s)=1 / s$ as a power series in $s^{-1}=1 / s$ about $s^{-1}=1$.

Sol: Let $z=s^{-1}$ and expand about 1 : The solution is $w(z)=z$, which has a zero at 0 thus a pole at ∞.

- 2.4: What is the RoC?

Sol: $|s|>0$ or $|z|<\infty$. \quad.

- 2.5: What is the residue of the pole?

Sol: The pole is at ∞. Since $w(s)=1 / s$ and applying the definition for the residue $c_{-1}=\lim _{s \rightarrow \infty} s(1 / s)=1$. Thus residue is 1 . Note that it is the amplitude of the pole, which is 1 .
Problem \# 3: Consider the function $w(s)=1 /(2-s)$

- 3.1: Expand $w(s)$ as a power series in $s^{-1}=1 / s$. State the RoC as a condition on $\left|s^{-1}\right|$. Hint: Multiply top and bottom by s^{-1}.
Sol: $1 /(2-s)=-s^{-1} /\left(1-2 s^{-1}\right)=-s^{-1} \sum 2^{n} s^{-n}$. The RoC is $|2 / s|<1$, or $|s|>2$.
- 3.2: Find the inverse function $s(w)$. Where are the poles and zeros of $s(w)$, and where is it analytic?
Sol: Solving for $s(w)$ we find $2-s=1 / w$ and $s=2-1 / w=(2 w-1) / w$. This has a pole at 0 and a zero at $\bar{w}=1 / 2$. The RoC is therefore from the expansion point out to, but not including $w=0$.

Problem \# 4:Summing the series

The Taylor series of functions have more than one region of convergence.

- 4.1: Given some function $f(x)$, if $a=0.1$, what is the value of

$$
f(a)=1+a+a^{2}+a^{3}+\cdots ?
$$

Show your work. Sol: To sum this series, we may use the fact that

$$
f(a)-a f(a)=\left(1+a+a^{2}+a^{3}+\cdots\right)-a\left(1+a+a^{2}\right)=1+a(1-1)+a^{2}(1-1)+\cdots
$$

This gives $(1-a) f(a)=1$, or $f(a)=1 /(1-a)$. Now since $a=.1$, the sum is $1 /(1-0.1)=1.11$.
-4.2: Let $a=10$. What is the value of

$$
f(a)=1+a+a^{2}+a^{3}+\cdots ?
$$

Sol: In this case the series clearly does not converge. To make it converge we need to write a formula for $y=1 / x$ rather than for x.
$f(1 / y)-f(1 / y) / a=\left(1+1 / a+1 / a^{2}+1 / a^{3}+\cdots\right)-1 / a\left(1+1 / a+a 1 /^{2}\right)=1+(1-1) / a+(1-1) / a^{2}+\cdots$
This gives $f(1 / a)=-a^{-1} /\left(1-a^{-1}\right)$. Now since $a=10$, the series sums to $f(10)=-0.1 /(1-0.1)=-1 / 9$. .

3.1.3 Cauchy-Riemann Equations

Problem \# 5: For this problem $\jmath=\sqrt{-1}, s=\sigma+\omega \jmath$, and $F(s)=u(\sigma, \omega)+\jmath v(\sigma, \omega)$. According to the fundamental theorem of complex calculus (FTCC), the integration of a complex analytic function is independent of the path. It follows that the derivative of $F(s)$ is defined as

$$
\begin{equation*}
\frac{d F}{d s}=\frac{d}{d s}[u(\sigma, \omega)+\jmath v(\sigma, \omega)] . \tag{DE-1.1}
\end{equation*}
$$

If the integral is independent of the path, then the derivative must also be independent of the direction:

$$
\begin{equation*}
\frac{d F}{d s}=\frac{\partial F}{\partial \sigma}=\frac{\partial F}{\partial \jmath \omega} . \tag{DE-1.2}
\end{equation*}
$$

The Cauchy-Riemann (CR) conditions

$$
\frac{\partial u(\sigma, \omega)}{\partial \sigma}=\frac{\partial v(\sigma, \omega)}{\partial \omega} \quad \text { and } \quad \frac{\partial u(\sigma, \omega)}{\partial \omega}=-\frac{\partial v(\sigma, \omega)}{\partial \sigma}
$$

may be used to show where Equation DE-1.2 holds.

- 5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Sol: First form the partial derivatives as indicated and then set the real and imaginary parts equal. This results in the two CR equations.

- 5.2: Merge the CR equations to show that u and v obey Laplace's equations.

$$
\nabla^{2} u(\sigma, \omega)=0 \quad \text { and } \quad \nabla^{2} v(\sigma, \omega)=0
$$

Sol: Take partial derivatives with respect to σ and ω and solve for one equation in each of u and v.

- 5.3: What can you conclude?

Sol: We can conclude that the real and imaginary parts of complex analytic functions must obey these conditions. \quad

Problem \# 6: Apply the CR equations to the following functions. State for which values of $s=\sigma+i \omega$ the CR conditions do or do not hold (e.g., where the function $F(s)$ is or is not analytic). Hint: Review where CR-1 and CR-2 hold.

$$
-6.1: F(s)=e^{s}
$$

Sol: CR conditions hold everywhere.

$$
-6.2: F(s)=1 / s
$$

Sol: CR conditions are violated at $s=0$. The function is analytic everywhere except $s=0$.

3.1.4 Branch cuts and Riemann sheets

Problem \# 7: Consider the function $w^{2}(z)=z$. This function can also be written as $w_{ \pm}(z)=$ $\sqrt{z_{ \pm}}$. Assume $z=r e^{\phi_{J}}$ and $w(z)=\rho e^{\theta_{J}}=\sqrt{r} e^{\phi_{J} / 2}$.

- 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully represent this function as single-valued?
Sol: There is one sheet for z and two sheet for $w= \pm \sqrt{z}$. When any point in the domain z (being mapped to $w(z)$) crosses the z branch cut, the codomain (range) $w_{ \pm}(z)$ switches from the w_{+}sheet to the w_{-}sheet. $w(z)$ remains analytic on the cut. Look at Fig. 4.4 in Chap. 4 (p. 132) to see how this works.

